LIFE SCIENCES FOR ENGINEERS

Course	19BS1404	Year	II	Semester	II
Code					
Course	Basic	Branch	ECE	Course Type	Theory
Category	Sciences				
Credits	2	L-T-P	2-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total	100
Internal		Evaluation		Marks	
Evaluation					

Course Outcomes								
	After successful completion of the course, the student will be able to							
CO1	Apply the principles of biology to create tangible and economically viable engineering goods.							
CO2	Know and illustrate bio-engineering field.							
CO3	Analyse the importance of bioenergetics and apply the knowledge to improve the living standards of societies.							
CO4	Gain the knowledge in genetic engineering.							
CO5	Design and develop new technologies in genetic industrial field.							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO	PSO	PSO
	1	2	3								11	12	1	2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

	Syllabus					
UNIT NO	Contents	Mapped POS				
I	Introduction to Biology	CO1				
	Comparison of Biological organisms with manmade systems- eye and	CO3				
	camera, flying bird and aircraft. Classificationoflivingorganisms- Cellular	CO5				
	basis of life, differences between prokaryotes and eukaryotes, classification					
	on the basis of carbon and energy sources					
II	Bio-molecules	CO1				
	Structureandfunctionsofproteinsandnucleicacids, hemoglobin, antibodies.	CO2				
	Enzymes-Industrial applications, Fermentation and its industrial applications.					
III	Bioenergetics and Respiration	CO2				
	Glycolysis and TCA cycle, Electron transport chain and oxidative	CO3				
	phosphorylation, Mechanism of photosynthesis. Human physiology.					
IV	Genetic Engineering	CO2				
	Mendel'slaws,	CO4				
	genemapping, Mitosis and Meiosis, Epistasis, single genedisorders inhumans. Gen	CO5				
	etic code.					
V	Recombinant DNA Technology	CO1				
	Recombinant vaccines, transgenic microbes, plants and animals. Animal	CO4				
	cloning, biosensors, biochips.	CO5				

Learning Recourses

Text Books

- 1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd,2018.
- 2. Arthur T Johnson, Biology for Engineers, CRC press,2011.

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wileyand Sons, 2009.
- 3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e,2012.